- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Lopez, Lidio (3)
-
Villalba, Ricardo (3)
-
Abiyu, Abrham (2)
-
Acuña-Soto, Rodolfo (2)
-
Adenesky-Filho, Eduardo (2)
-
Alfaro-Sánchez, Raquel (2)
-
Aragão, José_Roberto Vieira (2)
-
Assis-Pereira, Gabriel (2)
-
Astudillo-Sánchez, Claudia C (2)
-
Babst, Flurin (2)
-
Battipaglia, Giovanna (2)
-
Beeckman, Hans (2)
-
Botosso, Paulo Cesar (2)
-
Bourland, Nils (2)
-
Brienen, Roel (2)
-
Brookhouse, Matthew (2)
-
Bräuning, Achim (2)
-
Buajan, Supaporn (2)
-
Buckley, Brendan M (2)
-
Camarero, J Julio (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Zuidema, Pieter A; Groenendijk, Peter; Rahman, Mizanur; Trouet, Valerie; Abiyu, Abrham; Acuña-Soto, Rodolfo; Adenesky-Filho, Eduardo; Alfaro-Sánchez, Raquel; Anholetto, Claudio Roberto; Aragão, José_Roberto Vieira; et al (, Science)Increasing drought pressure under anthropogenic climate change may jeopardize the potential of tropical forests to capture carbon in woody biomass and act as a long-term carbon dioxide sink. To evaluate this risk, we assessed drought impacts in 483 tree-ring chronologies from across the tropics and found an overall modest stem growth decline (2.5% with a 95% confidence interval of 2.2 to 2.7%) during the 10% driest years since 1930. Stem growth declines exceeded 10% in 25% of cases and were larger at hotter and drier sites and for gymnosperms compared with angiosperms. Growth declines generally did not outlast drought years and were partially mitigated by growth stimulation in wet years. Thus, pantropical forest carbon sequestration through stem growth has hitherto shown drought resilience that may, however, diminish under future climate change.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Morales, Mariano S.; Cook, Edward R.; Barichivich, Jonathan; Christie, Duncan A.; Villalba, Ricardo; LeQuesne, Carlos; Srur, Ana M.; Ferrero, M. Eugenia; González-Reyes, Álvaro; Couvreux, Fleur; et al (, Proceedings of the National Academy of Sciences)South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.more » « less
An official website of the United States government
